
Graph Neural Networking Challenge 2020 - Steredeg’s solution

LOÏCK BONNIOT, InterDigital and Univ Rennes, Inria, CNRS, IRISA
CHRISTOPH NEUMANN, InterDigital
FRANÇOIS SCHNITZLER, InterDigital
FRANÇOIS TAÏANI, Univ Rennes, Inria, CNRS, IRISA

This document describes the winning solution to the GNN Challenge 2020 organized by the Barcelona Neural Networking
Center for the ITU Artificial Intelligence/Machine Learning in 5G Challenge. We first describe our methodology, then give the
set of hyper-parameters that allowed us to achieve the best score with an average relative error of 1.53%, and finally explain
and discuss our results.

1 INTRODUCTION
Software Defined Networking (SDN) is the concept of programmatically defining and (re)configuring a network
from a centralized control plane. The great level of flexibility introduced by SDN has been embraced by many
players, e.g. in 5G networks, in datacenters or in broadband ISP networks, and SDN is now effectively controlling
many of these networks. However, communication networks are complex distributed systems in which every
configuration parameter, the topology and the capacity of the network itself can have an important impact on the
network’s performance (e.g. resulting jitter, latency, loss, etc.). For example, the routing policy and the priority
policies can largely affect the resulting latency of the concerned traffic flows. Thus, it becomes crucial to have
powerful network modeling tools that allow to predict the impact of a network configuration (which may include
a change of the network topolgy) on a network’s perfomance before applying it.

Machine learning arises as a promising solution to build accurate predictive models able to operate on networks
in real time. Actually, the ITU highlights relevant use-cases for machine learning based network configuration in
order to optimize the Quality of Experience (QoE) [2]. In particular, one requirement is that machine learning
models should be able to take as input parameters such as the network’s bandwidth, bit rate, cache size and
network states and return a predicted QoE which includes e.g. latency, jitter.

Graph Neural Networks (GNN) seem to be particularly promising as they may allow to capture the communi-
cation network topology and to operate and predict on network topologies never encountered before, as showed
by Rusek et al. [4]. In this context, the Barcelona Neural Networking Center organized the GNN Challenge 2020
as part of the AI/ML in 5G Challenge of the ITU.

This document describes our winning solution to the GNN Challenge 2020. We first describe our methodology,
then give the set of hyper-parameters that allowed us to achieve the best score with an average relative error of
1.53%, and finally explain and discuss our results. The source code of the solution is freely available on demand.1

2 MODEL OVERVIEW
Our model is based on novel message-passing convolutional layers on graph neural networks of the form
x′i = γ

(
xi ,□j ∈N(i) ϕ

(
xi , xj

) )
, where xi is the hidden state of node i; γ and ϕ are differentiable functions; □ is an

aggregation function over the neighbors j of i . We rely on the methods for message passing on graphs introduced
by [1] and extend with specific types of convolutions (see section 2.2). We use the base class provided by Pytorch
Geometric [3].

1Please contact the second author via email (firstname.lastname@interdigital.com) to request access to the source code.



2 • Loïck Bonniot, Christoph Neumann, François Schnitzler, and François Taïani

A

B C
2 3

1 4

(a) Original topology

AB CB CA AC BC BA

1 4 3 2

(b) Bipartite graph Gp,l

1 2 3 4

B A C

(c) Bipartite graph Gl,n

AB BA BC CB AC CA

B A C

(d) Bipartite graph Gp,n

Fig. 1. Example of a basic topology leading to the three presented bipartite graphs.
Nodes are denoted by a single letter, links by a number, paths by two letters (XY meaning path from X to Y).

2.1 From network topology to bipartite graphs
We first define x and N for the GNNet problem. Each sample contains the network topology, features for paths
(Fp , for each source-destination pair), links (Fl ) and nodes (Fn ), and finally routing for each path. For every sample,
we construct Gp,l , Gl,n and Gp,n , three bipartite graphs where paths, nodes and links are represented as vertices
and edges are undirected.
• Gp,l connects each path to the links it uses
• Gl,n connects each link to the two nodes that have a topological link between them
• And Gp,n that directly connects each path to the nodes it traverses.

Figure 1 presents an example of the construction of the three aforementioned bipartite graphs from a 3-nodes
simple network topology. We defineNA,B (i) as the indices j of vertices where (j, i) is an edge inGA,B . Conversely,
we define ÑA,B (i) as the indices j of vertices where (i, j) is an edge inGA,B . We define the hidden states for paths,
links and nodes as p, l, n respectively. The hidden states are initialized to the features of each path, link and node
respectively. In our implementation, all the hidden states are stored in a single x matrix for compliance with
Pytorch Geometric APIs. This requires complex index handling, so we use separate notations in this document.

2.2 Aggregations in graph message-passing convolutions
In our model, we use two different functions for □: a set of permutation-invariant functions Ω when the order of
inputs should be ignored, and a Recurrent Neural Network (RNN ) otherwise. In both cases, ϕ is a fully-connected
layer with an activation function that only depends on xj . (We denote the concatenation operator by ∥.)

Ω : X = {ϕ(xa), . . . ,ϕ(xz )} 7→ (avg(X) ∥ sum(X) ∥ min(X) ∥ max(X) ∥ var(X))
RNN : X = {ϕ(xa), . . . ,ϕ(xz )} 7→ GRU (X)

2.3 Final model
Using the definitions from the two previous subsections, we can now describe our Graph Neural Network model
at a high level. As illustrated in Figure 2 and detailed in algorithm 1, the model first initializes hidden states p, l,n
using available features for every path, link and node (line 1). Then, it successively updates the hidden states
using the message-passing convolution over the bipartite graphs defined in subsection 2.1. We repeat the update
procedureT times to allow fixed-point convergence of hidden states given the inter-dependencies between paths,



Graph Neural Networking Challenge 2020 - Steredeg’s solution • 3

Fp : Traffic info & ToS Fl : Capacities Fn : QoS policies

p: Paths hidden state

l: Links hidden state

n: Nodes hidden state

Gp,l Gl,n

Gp,n

Per-path average delay

Readout

Fully-connected layer
Graph convolution layer

1 1 1

2 3
45

6

7

Fig. 2. Visual representation of our GNN model. Firstly, hidden states are initialized from available features in step 1 . Using
convolution operations over the bipartite graphs Gp,l and Gl,n , hidden states are successively updated through steps 2 to
5 (repeated T times). Paths’ hidden states are finally updated using a convolution over Gp,n 6 and fully-connected layers
are used to readout the predicted average delay for each path 7 .

links and nodes (lines 2 to 7). This method of state convergence was first proposed in Routenet [4] and we also
noted its capability to increase model’s accuracy. A final convolution is applied to build an additional relation
between nodes and paths (line 8) Finally, each path’s hidden state is transformed to the final per-path average
delay through a series of non-linear fully-connected layers (the “Readout” step from line 9). It is worth noting
that the full workflow is applied both during training and inference.

Trainable parameters are not shared between layers (we omit indices for Ω,RNN ,γ ,ϕ to improve readability
in algorithm 1). We use RNN aggregation when an ordering of vertices is available: for instance links and nodes
are ordered within each path (convolutions in steps 5 and 6 or lines 6 and 8) but there is no ordering relation
between links and nodes. Fully connected layers are denoted by FC . The actual implementation uses additional
padding and concatenation operations to “glue” the layers together.

3 TRAINING

3.1 Features preprocessing
Input features exhibit large differences between them: for instance, paths “EqLambda” vary from 40 to 2000
while links “bandwidth” vary from 10,000 to 100,000. Hence, we standardize continuous features by removing the
mean and scaling to unit variance. (This simple preprocessing allowed us to greatly improve on the RouteNet [4]
baseline.) Nodes’ features only have a limited set of values: there are only 3 possible queuing policies (strict
priority SP, weighted fair queuing WFQ, deficit round robin DDR) and 5 combinations of weights for WFQ
and DDR, leading to a total of 11 possible combinations. We encode these 11 combinations to a 4-dimensional
embedding. We apply another embedding for the paths ToS, transforming the 3 possible values in a dimension of
size 4. (Embeddings are also learned during the training.)



4 • Loïck Bonniot, Christoph Neumann, François Schnitzler, and François Taïani

Algorithm 1: High-level pseudo-code of our GNN proposal
▷ State initialization, padding with zeroes

1 ∀i ∈ p : pi ←
[
Fp,i , 0, . . . , 0

]
, ∀i ∈ l : li ←

[
Fl,i , 0, . . . , 0

]
, ∀i ∈ n : ni ←

[
Fn,i , 0, . . . , 0

]
2 for t ← 1 to T do
3 ∀i ∈ l : li ← γ

(
li ,Ωj ∈Np,l (i) ϕ

(
pj
) )

▷ Update link hidden state from path hidden state

4 ∀i ∈ n : ni ← γ
(
ni ,Ωj ∈Nl,n (i) ϕ

(
lj
) )

▷ Update node hidden state from link hidden state

5 ∀i ∈ l : li ← γ
(
li ,Ωj ∈Ñl,n (i) ϕ

(
nj
) )

▷ Update link hidden state from node hidden state (“backward”)

6 ∀i ∈ p : p′i ← γ
(
pi ,Ωj ∈Ñp,l (i) ϕ

(
lj
) )
, p′′i ← γ

(
pi ,RNNj ∈Ñp,l (i) ϕ

(
lj
) )

7 p← FC0 (p′ ∥ p′′) ▷ Update path hidden state from link hidden state with two aggregation methods

8 ∀i ∈ p : p′i ← γ
(
pi ,RNNj ∈Ñp,n (i) ϕ

(
nj
) )

▷ Bonus convolution from node to path hidden states

9 p← (
p ∥ p′ ∥ Fp

)
▷ Start readout from path hidden states and include features back

10 r1 ← LeakyRELU (FC1 (p))
11 r2 ← LeakyRELU (FC2 (r1))
12 r3 ← FC3 (r2)
13 return FC4 (LeakyRELU (r3) ∥ TanH (r3))

3.2 Using the logarithm in the loss function
The challenge uses the Mean Average Prediction Error (MAPE) to evaluate solutions against expected average
delays. This metric tends to favour small predictions: predicting 1 when the expected result is 5 leads to an error
of 80%, while predicting 5 when the expected result is 1 leads to an error of 400%. It seemed important to train our
model on this loss function, but this implies some practical considerations. First, it is not possible to normalize or
standardize the expected model output (a zero value would lead to a division by zero and negative values do not
make sense for MAPE). Then, expected delays range from 0.0075 to 20, with most values staying below 1. To
improve numerical stability (and since we are interested in relative differences in this challenge) we train over
the logarithm of the expected average delays distribution: ∀di ∈ ]0, 20] : d ′i = log(di + 1) > 0.

4 EVALUATION
We tried many combinations of hyper-parameters for the challenge. In this section, we present the results for the
best model (as measured from the provided validation dataset).

4.1 Challenge score
Using a single model, we obtained a MAPE of 1.66% on the evaluation dataset after 750’000 training samples
(submission 16, Table 1). We first trained this model on 500’000 samples with a cyclic learning rate scheduler
applied to the Adam optimizer (Scheduler1), then relaunched the training from the last trained parameters for
250’000 samples, with a slightly modified learning rate scheduler (Scheduler2).
To further improve our score, we trained several models with different hyper-parameters. As a result, our

submission number 18 (MAPE of 1.53%) is the harmonic mean of 4 models’ outputs (Table 2). The advantage of
this power mean is that it favours small values, just like the MAPE, allowing to reduce the error in our delay
predictions.



Graph Neural Networking Challenge 2020 - Steredeg’s solution • 5

Table 1. Hyper-parameters used for submission 16.

Loss function MAPE over d ′i
Batch size 8 samples
Optimizer Adam with learning rate = 1 × 10−2, weight decay = 0
Scheduler1 CyclicLR with exp decay of 0.999, base learning rate = 1 × 10−8, max = 1 × 10−3

step every 128 samples, 1280 samples up, 102 400 samples down
Scheduler2 CyclicLR with exp decay of 0.999, base learning rate = 1 × 10−10, max = 1 × 10−4

step every 128 samples, 1280 samples up, 102 400 samples down

Hidden state size 400 for paths, links and nodes (p, l,n)
RNN size same as hidden state (400)
FC1 size 512
FC2 size 256
FC3 size 256

T 3
Total params 11 465 185

Table 2. Summary of hyper-parameters used in models for submission 18.

Model Loss function Hidden state size FC1 size FC2 size FC3 size T

0 MAPE 400 512 256 256 3
1 MSE 400 512 256 256 3
2 MAPE 300 128 128 256 3
3 MSE 300 128 128 256 3

4.2 Visualization of paths’ hidden states
Each path’s predicted delay is extracted from the corresponding path’s hidden state using the Readout fully-
connected layers. It is thus interesting to analyze the hidden states to verify the model’s ability to extract relevant
features to our problem. To visualize the hidden states in an understandable way, we project the high-dimensional
hidden states to a 2-dimensional space using t-distributed Stochastic Neighbor Embedding (t-SNE).
Figure 3 shows the result of this projection, with different coloring for relevant features in the case of the

delay-prediction problem (each point represents a path). In the top left plot, we color the paths according to the
expected average delay and we can clearly see a smooth color gradient between low and high latencies, hinting
that the hidden states hold sufficient information to give good delay predictions. The top right plot hints that
paths with high delays are correlated with paths having a ToS of 2. This is not surprising: this ToS has the lowest
weighting for WFQ and DRR QoS policies in the provided datasets. Bottom plots show that the hidden states also
contain information about links parts of each path. For instance, we can clearly see that paths are grouped by their
lenghts in the left plot and by the average of their links’ bandwidths in the right plot, hinting that convolutional
operators are very useful to extract important information.

4.3 Impact of loss function and learning rate policy
As explained in subsection 3.2, our best model was trained over the MAPE from the logarithm of the expected
average delays. Figure 4 shows the difference in the predicted delays between a model trained with the original
delays (left) and our best model trained with logarithmic delays (right). For high expected delays (> 10), we



6 • Loïck Bonniot, Christoph Neumann, François Schnitzler, and François Taïani

0.1

1

10
20

Expected
path

delay
(log

scale) 0

1

2

Path
ToS

2

4

6

Path
length

2

4

6

8

10
·104

Average
link

bandw
idth

Fig. 3. 2-components t-SNE visualization of paths’ hidden states, colored by expected path delay (top left), path type of
service (top right), path length in number of links (bottom left) and average link bandwidth within each path (bottom right).
We can clearly see that these characteristics are correctly embedded in paths’ hidden states.

observed that the predicted delay was biased towards low values when using original delays. Applying the
logarithm before computing the loss (right plot) reduced the prediction error, especially for high latencies (the
dots are closer to the identity function).

Finally, we depict the evolution of the learning rate and the MAPE during the training process in Figure 5. We
found that Pytorch’s Cyclic Learning Rate Scheduler allowed our models to reach lower error values (compared to
monotonically-decreasing schedulers). Intuitively, this scheduler avoids local minima by “jumping” to unexplored
regions in the parameters space using high klearning-rate. This is clearly visible around batch 100 000: after a
slow decrease, the learning-rate jumps back to around 5 × 10−4. The training loss then increases for about 50 000
batches before reaching lower values. We note that the loss over the validation dataset follows the loss over the
training dataset with a reasonable difference, showing no sign of overtraining.

5 CONCLUSION
In this document we described our solution to the Graph Neural Networking Challenge 2020 organized by
the Barcelona Neural Networking Center. We proposed a new way to transform a network topology with
the associated routing information to a set of bipartite graphs that can be used for Graph Message-Passing
Convolutions. Based on the proposed bipartite graphs, we constructed specific state aggregations to fully exploit
the available features and compute relevant hidden states for network’s paths, links and nodes. Finally, we
provided training parameters that enabled us to win the challenge with the minimal average relative error.



Graph Neural Networking Challenge 2020 - Steredeg’s solution • 7

10−1 100 101

10−1

100

101

Expected delay

Pr
ed
ic
te
d
de
la
y

Trained with MAPE loss

10−1 100 101

Expected delay

Trained with MAPE loss on logarithm

Fig. 4. Predicted vs. Expected delay for some paths in the validation dataset (each dot is a prediction). The left plot shows the
result after training on the MAPE loss applied on the original expected delay. The right plot shows the result after training
on the MAPE loss applied on the logarithm of the expected delay. This second option is less biased towards low predictions.

10−3

10−4

10−5

10−6

10−7

Le
ar
ni
ng

ra
te

0 0.5 1 1.5 2 2.5 3 3.5 4

·105
0

0.2

0.4

Training batch

M
A
PE

Training set
Validation set

Fig. 5. Learning rate and MAPE loss during the first batches of training. We use Pytorch’s Cyclic Learning Rate scheduler.



8 • Loïck Bonniot, Christoph Neumann, François Schnitzler, and François Taïani

REFERENCES
[1] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural Message Passing for Quantum

Chemistry. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 70),
Doina Precup and Yee Whye Teh (Eds.). PMLR, International Convention Centre, Sydney, Australia, 1263–1272. http://proceedings.mlr.
press/v70/gilmer17a.html

[2] Focus Group on Machine Learning for Future Networks including 5G. 2019. Machine learning in future networks including IMT-2020: use
cases. ITU. Supplement 55 to Y.3170 Series, October 2019.

[3] PyTorch geometric. 2020. PyTorch geometric - MessagePassing. https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#
torch_geometric.nn.conv.message_passing.MessagePassing

[4] Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2019. Unveiling the potential of
Graph Neural Networks for network modeling and optimization in SDN. In Proceedings of the 2019 ACM Symposium on SDN Research.
140–151.

http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.message_passing.MessagePassing
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.message_passing.MessagePassing

	Abstract
	1 Introduction
	2 Model overview
	2.1 From network topology to bipartite graphs
	2.2 Aggregations in graph message-passing convolutions
	2.3 Final model

	3 Training
	3.1 Features preprocessing
	3.2 Using the logarithm in the loss function

	4 Evaluation
	4.1 Challenge score
	4.2 Visualization of paths' hidden states
	4.3 Impact of loss function and learning rate policy

	5 Conclusion
	References

