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Abstract CDN Streaming Server
With video streaming applications, end-user Quality of Experience PR PR - o N
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players. While QoE monitoring is critical for Content Delivery Net- A logs T
works (CDNs), player metrics are not always provided due to tech- ‘
nical, contractual or regulatory limitations. We propose to leverage
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the help of machine learning models. Our approach is based on Q{— L T T -
constant-memory statistic accumulators, allowing large-scale anal- == E model
ysis of video streams. We evaluated our implementation with more Video players QoE models

than 100 000 concurrent streaming sessions on a single CPU core,
showing good correlation with QoE ground truth (p > 0.7, R* > 0.5).
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1 Introduction

Content service providers aim to deliver the best possible experi-
ence when streaming video to their end-users; it is therefore key
to measure and estimate the QoE as perceived by end-users. In
general, this is achieved by instrumenting the video player on end-
users’ devices to collect service metrics such as playback startup
time, (re)bufferings, and information about the displayed video res-
olution [17, 24]. These metrics are then reported back to a central-
ized monitoring and analytics platform. While many player-side
SDKs exist that collect these metrics, it is not always possible or
desirable to integrate them. In some cases, the SDK may not be
supported (e.g., on legacy devices or specific operating systems),
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Figure 1: Architecture overview of the proposed QoE infer-
ence approach based on CDN access logs.

the cost of integration and deployment is too important, or inte-
grators are bound to specific third-party SDK providers. Finally,
privacy regulations (e.g., GDPR in Europe) might restrict informa-
tion collected from end-users.

As an alternative data source for QoE estimation, video stream-
ing CDN providers may want to exploit cache server logs. Web
servers, including Nginx [12] and Apache [9], provide access logs
with server-side information on the timings, payload size and state
of all HT TP requests. In CDNS, these per-HT TP request metric logs
are used to detect problems, e.g., by pinpointing long HTTP down-
load times, internal server errors or cache misses. Cache server
logs however do not directly indicate user-perceived QoE, espe-
cially in the case of video streaming [17]. Indeed, a single Adap-
tive BitRate (ABR) streaming session generates a large number of
HTTP requests, and individual per-HT TP request metrics provide
little information about the streaming session QoE as a whole.

In this paper, we describe how a video streaming CDN provider
can exploit cache server logs to extract the video streaming QoE
indicators at scale. The contributions of this paper are as follows:

e We propose a method to infer the QoE of end-users based
on CDN cache server logs. We assume that the CDN logs
provide a streaming session identifier for every HTTP re-
quest, either from query parameters or from HTTP headers
(e.g., with CMCD [1]). This identifier allows the CDN server
to perform incremental calculations using constant mem-
ory statistic accumulators for every streaming session. The
resulting statistic data is fed into machine learning models
that output typical QoE metrics such as video startup time,
average ABR layer and number of layer switches, video play-
back stalls count and durations for every streaming session.
As a side effect, our models are also able to infer the video
player name when it is not known. An overall overview of
the approach is depicted in Figure 1.
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e We implemented our approach on a Nginx-based CDN
cache server. CDN access logs are shared using inter-process
communication, and our machine learning models are exe-
cuted by the highly performant Open Neural Network Ex-
change (ONNX) [10] runtime. These technical choices, com-
bined with the fact that we only rely on constant-memory
online computations on CDN log streams, allow us to han-
dle up to 100 000 concurrent streaming sessions on one CPU
core. Such workload is in line with classical CDN cache
servers workloads that usually serve hundreds of thousands
of concurrent streaming sessions.

e We trained and evaluated our models by running around
10000 DASH [16] and HLS [19] video streaming sessions
in an emulated network with randomized network impair-
ments and several video players (Dash.js [8], HLS.js [6],
Shaka [20] and THEOPIlayer [25] on Firefox [5] and Chrome
[11]). The QoE metrics ground-truth has been recorded us-
ing a client-side library. We achieve a good correlation with
QoE ground truth (p > 0.7, R* > 0.5).

2 Related work

QoE metrics for ABR video streaming have been recognized in a
large number of studies [7, 15, 17, 24]. For instance, Nam et al. [17]
have evaluated the impact of startup latency, rebuffering and bi-
trate changes on more than 400 000 YouTube streaming sessions.
They have demonstrated in particular that multiple stalls are more
detrimental to QoE than a single stall of the same total duration,
while startup time and layer switches can also be impactful on QoE.

Early works have focused on QoF estimation from the Internet
Service Provider (ISP) perspective, using timing and bandwidth in-
formation from packet traces [3, 4, 22]. The proposed methods usu-
ally work over encrypted traffic, making them a good choice for the
monitoring of third-party streaming services (e.g., Youtube). In this
paper, we focus on HTTP layer information extracted from CDN
access logs to improve QoF inference accuracy.

In this area, Loh et al. [14] have already proposed a lightweight
approach to estimate playback behavior of YouTube videos from
the CDN servers. The authors demonstrated that requests inter-
arrival times can be valuable in estimating classic QoE metrics.
They leveraged packet and request traces with random forests and
neural networks to estimate initial startup delay, ABR layer switch-
es and playback stalls. The paper primarily focuses on machine
learning. In contrast, our work adopts a more generic approach, en-
compassing not only machine learning but also real-time request
processing and large-scale applications. This comprehensive ap-
proach allows us to handle each request in real time using incre-
mental calculations, enabling us to estimate the user-perceived
quality of experience immediately after the session concludes.

Similarly, Shah et al. [23] proposed SSQoE, a methodology to
model player buffer from inter-arrival timings, allowing ABR layer
switches and playback stalls detection for large-scale video perfor-
mance monitoring. However, their methodology makes several as-
sumptions on player buffering behavior and segment duration that
cannot be applied to most CDNs. Our approach is agnostic to the
streaming video player and leverages only aggregated statistics ex-
tracted from CDN access logs. This strategy drastically lowers the
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memory and computing requirements, allowing large-scale QoE in-
ference. We believe our work can improve SSQoE’s performance
and accuracy to assist in large-scale video performance monitor-
ing at the CDN, leading to faster QoE anomaly detection and trou-
bleshooting (see section 5 for a comparison of the two approaches).

3 Proposed approach

Our approach to infer the QoE without the use of any client-side
data is illustrated in Figure 1. This solution involves video players
sending requests to the streaming server to retrieve the necessary
segments and manifests during a session. First, the CDN streaming
server, equipped with caching functionality, delivers content to the
video player and redirects CDN logs to the aggregation module.
Then, the aggregation module performs incremental computations
on the logs, significantly reducing data volume and providing met-
rics that offer a comprehensive overview of the session. Finally, the
processed data is utilized as features to machine learning models
with the objective of inferring the QoE. We designed these models
to be easily modifiable: we have ensured that they can be retrained
effortlessly, either by collecting new data from video players or for
specific requirements such as the addition of a new streaming con-
figuration to the system. (This includes supporting new operating
systems, browsers, video players, ABR algorithms, and also new
video encoding and packaging configurations.)

We assume that each CDN access log line includes a streaming
session identifier. This assumption is reasonable as many video
streaming CDNSs include such an identifier either as part of the
URL being requested or as an HTTP header. For instance, video
players supporting Common Media Client Data (CMCD) [1] may
provide the session identifier through the “sid” CMCD key. This
session identifier allows the CDN server to perform aggregated
calculations across the streaming session; these calculations out-
put arrays of numerical values describing distributions (such as
the mean and the median inter-request time for each session) and
counts of sudden changes in distributions or values.

At the end of a streaming session, our system infers the QoE
metrics related to the streaming session: video startup time, aver-
age ABR layer and number of layer switches, video playback stalls
count and duration. We rely on machine learning models to infer
these metrics (more precisely, for every metric we rely on a ded-
icated machine learning model). These models take as input the
array of calculated numerical values describing the streaming ses-
sion as extracted from the CDN access logs.

To build the machine learning models, we rely on ground truth
data collected via a player-side enterprise SDK that retrieves the
QoE metrics that we would like to estimate. The ground truth data
is either collected via controlled lab experiments where a large va-
riety of network conditions are emulated or by relying on a set of
video players deployed in the wild. For instance, ground truth can
be collected by relying on a subset of recruited end-users, by de-
ploying dedicated video player probes at selected vantage points
or by exploiting data coming from other deployments with a client-
side SDK.
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Figure 2: Shown layer over time vs. the incremental Three
Sigma Rule [21] for a HLS.js session. This rule allows us to
identify a stall at the beginning of the session.

3.1 Intuition and motivating example

In this subsection we provide a few simple examples to show that
CDN cache server access logs provide a rich set of information and
metrics that should allow us to infer QoE metrics.

A CDN cache server access log is a concatenation of log lines,
each log line providing metrics related to a single HTTP request. A
log line includes information such as timings (e.g., time of request
and duration of request), payload size and HTTP response status.
Other metrics, such as an indication of a cache miss or hit, a session
identifier or specific headers might also be included in a log line.
Taken individually, each log line provides little insight on the qual-
ity of an ongoing streaming session. However, if analyzed along a
streaming session, the logged metrics reveal the state and behav-
ior of the video player. As an example, a video player without any
play-out problem generally fetches video segments of a single rep-
resentation at regular timing intervals; in contrast, a player that en-
counters bandwidth variations or problems during download will
not be able to fetch the segments at the same frequency and might
switch to different representations. These patterns become visible
in the access log if we analyze the log lines along a streaming ses-
sion: inter-request times and payload sizes change over time.

Figure 2 shows an example of the behavior of inter-request times
of a streaming session in the case of a stall. We can clearly observe
an increase of inter-request times. The two outliers located above
three standard deviations relative to the mean correspond to player
stalls. Following the stall, the player decides to request smaller seg-
ments as it switches to a smaller representation of the video. Sim-
ilarly, Figure 3 indicates a linear correlation (p = 0.95) between
the mean time between the ten first queries of a session generated
with a Dash.js video player and its startup time as measured by a
player-side SDK. These observations indicate that we may use sta-
tistical methods to estimate the QoE metrics. (We recall that pre-
vious work [14, 23] also showed that inter-request times can be
useful to estimate QoE.)

3.2 Incremental computations on CDN logs

CDN access logs should be processed in real time to react quickly
to any QoE degradation issue. For performance reasons, it is unre-
alistic to store every access log in memory for the duration of every
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Figure 3: Startup time vs. mean inter-request time for thou-
sands of Dash.js sessions (Pearson’s correlation coefficient:
0.95; Spearman’s rank correlation: 0.85).

streaming session: some sessions may last several hours, resulting
in thousands of log rows per session.

In this work we propose to perform incremental calculations us-
ing constant-memory statistic accumulators for every streaming
session. When parsing an access log line, the QoE service extracts
the streaming session identifier, the type of request (e.g., manifest
or segment) and even the selected ABR layer from the provided
URL. It uses the extracted identifier to aggregate metrics related
to a given streaming session on-the-fly. For instance, it is possible
to estimate the distribution of any metric using basic arithmetic
operations (minimum, average, maximum) and approximate quan-
tile sketches (such as the P? quantile estimator [13] or HdrHis-
togram [26]). We thereby compute approximate distributions of
inter-request times, payload sizes and Time To Last Byte (ttlb) for
both manifests and segments, and for cache hits and cache misses.

Additionally, it is also relevant to add several counters tailored
for ABR streaming. For instance, we use the selected layer pro-
vided in access log to count changes in requested layers (note that
a change in requested layer may not always lead to a playback
layer switch, this counter should be refined with other statistics,
see subsection 5.3). As shown in Figure 2, we also use the estimated
distribution of segment inter-request times to count the number of
segments with an inter-request time above the three sigma thresh-
old. With this approach, the memory footprint of any concurrent
streaming session is constant and limited, while distribution statis-
tics are pre-computed and always available for QoE inference.

4 Implementation details

We implemented a prototype of our approach as a dedicated C++20
QoE service running alongside Nginx [12] cache server. For every
streaming session served by Nginx, this QoE service provides ac-
cess log parsing and aggregation, along with final QoE inference.

4.1 Scalable access log aggregation

Nginx is usually configured to write access logs to the server filesys-
tem. While storing the logs can be useful for audits and analytics,
we setup Nginx to send access logs to the QoE service via UDP
sockets instead. This way, access log processing is simplified and
there is no specific requirement for storage I/O. Moreover, multi-
ple Nginx servers can feed the QoE service through the network.



MHYV 24, February 11-14, 2024, Denver, CO, USA

—— No log Disk log = UDP log
T T T T T T

10°

Latency (sec)

1074

| | | |
0 50 90 95 99

Percentile

| |
99.9 99.99 100

Figure 4: Distribution of HTTP query latencies for different
logging configuration with Nginx (log scale, 60 000 concur-
rent streaming sessions). The logging configuration does not
impact server latency.

Our benchmarks show that enabling access logs have no visible
impact on Nginx performance in the case of video streaming (ei-
ther when writing logs to a rotating disk, or when sending logs via
UDP, see Figure 4).

We leverage the Boost Accumulators library [18] to store the
statistics for every streaming session in a fixed-size structure, re-
sulting in a fixed memory consumption of 30 kB by concurrent
streaming session. To ensure good scalability, we decouple access
log parsing from access log aggregation in multiple threads, and
use lock-free queues to transfer data between threads. This decou-
pling is critical, as access log reception and parsing accounts for
most of the processing time under load.

4.2 QoE inference

We leverage the ONNX format and runtime to execute QoE models
within our prototype. The ONNX format allows easy interoperabil-
ity between different machine-learning frameworks: this means
that we can train QoE models using many available frameworks
and execute the inference using many different runtime applica-
tions. In our case, we use the official C++ ONNX runtime. This
approach decouples the QoE models’ internals from the remainder
of the prototype. It is therefore easy to change the QoE models
without needing any change to the source code, allowing fast de-
ployments of re-trained and specialized QoE models.

To maximize throughput, the prototype periodically runs QoE
inference on the batch of streaming sessions that have been stop-
ped. More specifically, the inference is done on sessions with no
recent access log data, taking pre-computed Boost Accumulators’
statistics for these sessions, and using these statistics as ONNX
inputs. Inferred QoE results are then shared with external third-
party analytics and can be used for global monitoring use-cases.

5 Evaluation

In this section we describe the methodology we followed to evalu-
ate our approach. First, we describe how we collected access logs
for diverse streaming sessions and the ground-truth QoE metrics
associated with these sessions. Then, we give more details on the
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Table 1: Distribution of the QoFE metrics in the dataset
described in subsection 5.1.

Min Mean P50 P90 Max
Duration (sec) 9.0 300 310 540 600

Startup time (sec) 0.42 6.0 1.5 16 150
Average layer (kbps) 340 3700 3600 5100 12000

Layer switches (count) 0.0 6.4 4.0 12 120

Stalls (count) 0.0 5.2 1.0 11 260

Stalls duration (sec) 0.0 27 3.4 56 580

QoE models we trained on our collected dataset of streaming ses-
sions. We finally give some accuracy figures and compare our re-
sults to work from Shah et al. [23].

5.1 Dataset description

In many production deployments, CDN access logs are accompa-
nied by ground-truth QoE metrics from client-side analytics solu-
tions. While very realistic, production datasets are in fact often
challenging to use for QoE inference training. In particular, most
real streaming sessions do not suffer from any particular QoE
degradation. This is especially true when the connectivity between
customers and CDNs is good (e.g., with wired or fiber connectiv-
ity). In our experience, production datasets are thereby heavily un-
balanced towards “good” QoE, and are biased towards specific net-
work topologies.

To avoid these shortcomings, we used a dedicated testbed to
emulate video streaming sessions with different parameters and
diverse network conditions. On the server-side, we used Nginx
as a cache server, along with our QoF inference implementation
(section 4). On the client-side, our testbed ran real video players
on real web browsers: the video players used for this experiment
are Dash.js [8], HLSjs [6], Shaka [20] and THEOPlayer [25] on
Firefox [5] and Chrome [11]. To emulate diverse network condi-
tions, we introduced random latency, jitter and bandwidth shap-
ing between the clients and the servers. The idea is that if the
network conditions degrade too much, the video players can no
longer retrieve segments in time, resulting in layer change down
or even video playback stalls. With this approach, we have emu-
lated around 10 000 DASH [16] and HLS [19] streaming sessions,
with both live and on-demand content, of playback duration vary-
ing between a few seconds and tens of minutes.

This dataset is much more diverse and balanced than typical
production datasets, making it more relevant for QoE inference.
We give some QoE distribution insights in Table 1. For instance,
we recorded sessions with startup delay ranging from 400 ms to
3 minutes, with the number of layer switches ranging from 0 to
120. More than half of the recorded sessions suffer from more than
1 second of playback stall, while 10% of the sessions suffer from
more than 56 seconds of playback stall, something that can be con-
sidered as very bad QoE. Our take is that if we obtain good QoE in-
ference models on this very diverse dataset, we could easily adapt
these models to any (less diverse) production environment. We il-
lustrate this claim in subsection 5.4.
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Figure 5: Extract of the QoE inference graph with details for
startup time estimation. Input features are first used to dis-
criminate between short and long startup time. Two special-
ized regressors are used to estimate the final startup time.

5.2 QoE model training

We adopt a unique approach for each metric that we aim to infer,
generating a distinct machine learning model tailored to its specific
characteristics and requirements. This section particularly focuses
on the methods employed to estimate the startup time and identify
the player. However, the methodologies and techniques discussed
herein can be generalized and applied to estimate other metrics
as well. We dedicate 80% of it towards the training of machine
learning models. The remaining 20% of the dataset is employed for
model validation and comparison (subsection 5.3). To estimate the
QOE metrics, we conducted evaluations on various machine learn-
ing models. Our findings revealed that Random Forests [2], offered
the most optimal balance between model accuracy and complexity.

As depicted in Figure 5, we employ a two-step approach to es-
timate the startup time. Initially, we utilize a Random Forest Clas-
sifier, which takes in 49 features, to determine if the startup time
surpasses a predefined threshold of 4 seconds. Depending on the
prediction from the classifier, we then employ one of two distinct
Random Forest Regressors, each also utilizing the same 49 features.
If the classifier predicts that the startup time is below the thresh-
old, we use a regressor that has been specifically trained on ses-
sions with startup times of less than 4 seconds. On the other hand,
if the classifier predicts that the startup time exceeds the thresh-
old, we use a different regressor that has been trained on the re-
maining sessions. This approach allows us to tailor our models to
different ranges of startup times, thereby improving the overall ac-
curacy of our estimations. The features that contribute most signif-
icantly to the performance of our models are those associated with
the time intervals between the initial 10 requests of each session.
Specifically, we found the average time, the 50th percentile, the
90th percentile, and the 99th percentile to be of particular impor-
tance. These features offer an in-depth insight into the distribution
of request times during the initial phase of each session, thereby
facilitating a more precise computation of the startup time.

As another example, we now describe our strategy to identify
the video player used in a streaming session, along with its con-
figuration (operating system, ABR algorithm, ...). We propose a
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Table 2: Comparison of Mean Absolute Error (MAE) and
Coeflicient of Determination (R?) for several QoE metrics
(test dataset of 1000+ DASH and HLS streaming sessions).

Baseline [23] | Our approach
QoE metric | MAE  R® MAE R?

Startup time (sec) N/A 0.94 0.89
Average layer (kbps) | 337  0.83 | 210 0.89
Layer switches (count) | 45 -0.02 | 1.7 0.90
)
)

Stalls (count 4.2 0.23 | 1.51 0.51
Stalls duration (sec 25 -0.05 | 8.3 0.72

straightforward player identification strategy based on a Random
Forest Classifier. In our analysis, we found that no single statistical
feature significantly dominates the decision-making process of the
classifier. Our models consider a variety of features, including the
average time between the first 10 requests of a session, the num-
ber of consecutive manifest requests, and the count of segments
issued beyond the mean plus three times the standard deviation.
While these features do not individually stand out, their collective
influence contributes to the classifier’s ability to accurately iden-
tify the video player configuration.

5.3 Results

To compare our proposed approach with the state of the art, we
implemented an alternative QoE inference method from Shah et
al. [23]. This alternative also leverages CDN access logs for video
streaming QoE inference, and provides similar QoE metrics except
for startup time estimation. We show inference accuracy results for
both approaches in Table 2 (the depicted numbers are all based on
the evaluation part of our dataset described in subsection 5.1). On
all tested QoE metrics, our approach has a better accuracy than the
baseline, and provides sufficient accuracy for production usage.

Startup time: it is particularly important to estimate video
playback startup delay, as it can severely reduce QoE if it becomes
too large. Because our approach computes statistics on the first
inter-request times, it provides excellent startup time estimation,
with less than 1 second of Mean Absolute Error (MAE) and less
than 100 ms of Median Absolute Error (MedAE). Unfortunately,
the baseline provides no startup time estimation.

ABR layers: in many configurations, layer information can be
extracted from the requested segments’ URLs. Intuitively, inferring
the average ABR layer for a given session shall be an easy task:
one only has to parse access logs timings and URLs to retrieve re-
quested layers history. In practice however, it highly depends on
the video player ABR strategy with respect to layer changes. For
instance, in its default configuration, Dash.js attempts to retrieve
higher layers periodically, and evaluates whether or not it should
upgrade the layer shown on screen. We show an example of this
behavior in Figure 6. Our machine learning models are trained to
understand different video player strategies, leading to more ac-
curate average layer inference (40% MAE improvement over the
baseline) and layer switches inference (60% improvement).
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Figure 6: Requested layers vs. shown layer over time for
a Dash.js session with default ABR algorithm. The player
does not necessarily change the shown layer when it tries
to download higher layers.

Stalls: when a video player is unable to download content seg-
ments in time, it may stall video playback. Depending on the fre-
quency and duration of stalls, the perceived QoE may be drastically
reduced. While our machine-learning approach can infer stall oc-
currence with 85% accuracy, results highlight that estimating the
number of stalls and their total duration is relatively hard: our
models have an MAE of 1.5 stalls and 8.3 stalled seconds, with an
MedAE of 1 stall and 4 stalled seconds. This is a substantial im-
provement over the baseline results (MAE of 4.2 stalls, 25 stalled
seconds) and should be sufficient for QoE inference in most cases.

Player identification: we show a confusion matrix for player
identification in Figure 7, based solely on CDN access logs. With
an accuracy of 98%, it is clear that HTTP request patterns are suf-
ficiently different between players to allow re-identification with
a properly trained machine-learning model. This re-identification
can be useful for analytics purposes, e.g. when video players can-
not be identified from user-agent information. For simplicity, in
this evaluation we configured the video players with their default
ABR algorithm. If different algorithms are used, it is possible to
train the player identification model with other (sub)classes, or
generalize the existing classes with more diverse data. For instance,
“Dash.js” output may refer to Dash.js player in Chrome or Firefox,
with ABR strategy set to either “abrDynamic” or “abrThroughput”.

5.4 Performance in the wild

We evaluated the models trained on our lab dataset on several
streaming sessions running over the Internet (including sessions
running over unreliable Wi-Fi). Results on this test dataset were
very similar to those presented in Table 2, with slightly higher
MAE: 1.7 s for startup time, 220 kbps for average ABR layer, 1.8 for
layer switches count, 1.6 for stalls count and 9.7 s for stalls duration.
This shows that our methodology produces generalizable models,
which can be used in the field without re-training. It is naturally
also possible to fine-tune the models with additional data coming
from production environments if available, to further improve QoE
inference accuracy.

Girault et al.

Predicted

Figure 7: Confusion matrix showing actual vs. inferred
video player in our test bed. Video players are correctly iden-
tified in 98% of sessions.

6 Conclusion

In this paper we presented a scalable and generic methodology to
estimate ABR video streaming QoE from CDN access log, with the
help of statistical accumulators and machine learning models. We
implemented this methodology using a Nginx cache server, built a
dataset of video streaming session with diverse network and QoE
conditions, and compared our approach to the state of the art. Our
results over both synthetic and production data demonstrate im-
proved accuracy and generalizability.

Several avenues for future work in server-side QoE estimation
remain open. We believe that more complex machine learning mod-
els could be used to improve the QoE inference accuracy. Deep
learning models are good candidates for the task, including sequen-
tial models such as transformers [27] that could process (and ag-
gregate) access logs query by query. Additional statistical features
could also be used to improve the models accuracy; for instance
some players may share relevant CMCD [1] metrics such as object
duration (d), playback rate (pr), or even buffer length information
(bl, bs). Different types of streaming sessions could also be stud-
ied, using additional video players, different ABR layer selection
algorithms, low-latency streaming, and sessions including pauses
or user-induced rebufferings.
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